VALUE ANALYSIS OR VALUE ENGINEERING – ESTABLISHING THE NOMENCLATOR AND THE IMPORTANCE LEVEL OF THE FUNCTIONS

Delia MANEA⁶

Abstract: Value Analysis / Value Engineering, by its nature, is an interdisciplinary issue that focuses on improving the value of the functions required to achieve the goal in question. Its purpose is the systemic application of the recognized techniques to identify the functions of the product as well as the value of these functions and to provide only those functions that are necessary to perform the required performance at the lowest total cost.

One of the most important stages of the Value Analysis / Value Engineering method is the elaboration of the nomenclature and the importance level of the functions.

Keywords: Value Analysis / Value Engineering, function, function nomenclature, the importance level of functions.

JEL Classification: M410

1. Introduction

Rich and Holweg (2000) defines Value Analysis/Value Engineeringas a process of systematic review that is applied to existing product designs in order to compare the function of the product required by a customer to meet their requirements at the lowest cost consistent with the specified performance and reliability needed.

The fundamental principle of the Value Analysis method, put forward by A. Fernandez, is based on an essential principle, i.e. this method should study the value of each function in consensus with the customer and compare the cost of technology or components before establishing the socalled functions and the technical functions needed to answer three

⁶

Review of General Management Volume 26, Issue 2, Year 2017

questions: what should it be done? how should it be done? what decision should be made?

The basic notion used by the Value Analysis / Value Engineering method is the *function*, as a special quality of the object designed, studied, modernized, etc., in relation to the production environment on the one hand and, on the other hand, the user.

The Value Analysis mechanism starts from the correct identification and classification of functions in order to highlight the value of utility that has a primary role in the guidance of the designers and other specialists.

Etymologically, the notion of function comes from *functus* that can be assimilated to the concept of performance, operation, action involved in achieving a goal. Identifying functions and analyzing their content is an evolutionary process. The increasing complexity of the activities carried out within a company requires a new perspective of analyzing and classifying the functions (Dragomir, C., 2008, p. 50). Referring to STAS 11272/1-79, Annex 1 of the standard, we note that at point 3 a classification of functions is performed in relation to several criteria that help us to interpret them, as we can see below in Table 1.

Classification Criterion	Function Type	Function Feature		
According to the importance of the functions	 main functions 	 corresponds to the main purpose of the object and directly contributes to the realization of the utility value; main functions can be objective or subjective. 		
	 secondary or auxiliary functions 	 serves to complete the main function and indirectly contributes to the realization of the utility value; secondary functions are objective 		
According to the measurement possibilities	 objective functions 	 functions characterized by objective measurable dimensions with the aid of one or more measuring units 		
	 subjective functions 	 functions characterized by psychosensory and social effects (organoleptic, aesthetic, fashion, prestige, etc.); 		

 Table 1. Classification of functions from the Value Analysis point of view

Classification Criterion	Function Type	Function Feature		
		• the dimensions of the subjective functions are estimated through a survey or a statistical survey		
According to the contribution	 necessary functions 	 functions that contribute to the achievement of the utility value of the object 		
to achieving the utility value of the object	 unnecessary functions 	 functions that do not contribute to the achievement of the utility value of the object 		
In relation to the time of the analysis	 existing functions 	• the necessary or unnecessary function at the time of the analysis		
	 new functions 	 necessary functions, derived from the users' requirements, attributed to the studied object after the analysis 		

Source: STAS 11272/1-79, point 3, Romania 1979

Once the functions of an object subjected to the Value Analysis are determined, they are entered into the 'Function Nomenclature' where they are ranked according to importance, on a scale of 1 to 5 (1 = desired, 2 = required, 3 = important, 4 = very important, 5 = vital) according to the following scheme of principle:

Figure 1. Clasification of functions according to their importance

Source: Charlot, X., (2006), Analyse Fonctionnelle – La Londe les Maures, 11 au 17 juin 2006, 48, http://www.in2p3.fr/actions/formation/ConduiteProjet06/doc-Charlot.pdf

The nomenclature of functions must be correct, otherwise wrong conclusions may be drawn.

2. Setting the nomenclature and the importance level of the functions

As I have already pointed out, the correct setting of the function nomenclature of a product is the most important methodological issue of the Valuation Analysis.

The product chosen to make the nomenclature and the importance level of the functions is the low-voltage insulated in PVC cable for vehicles that is also used in electrical installations.

Thus, we determined that the global function (Fg) of the product is given by the electricity transmission. To achieve this function, there are more seven auxiliary functions, derived from the socio-economic functions of the product that are based on the quality-utility-competitiveness correlation, as shown in Table 2.

Function	Function name	Category	
F1	Ensures the cable availability	Objective	
F2	Protects the cable against external action	Objective	
F3	Ensures that the cable is connected to its external environment	Objective	
F4	Ensures the ecology of the cable	Objective	
F5	Ensures the easiness of the cable handling	Objective	
F6	Ensures the aesthetics of the cable	Subjective	
F7	Ensures the socio-cultural effects	Subjective	

 Table 2. Functions of the low voltage electrical cable

To perform the systemic analysis of the functions, each function mentioned in the above table was structured on elementary functions, as shown in Table 3.

General Function	Function Name	Specific Function	Function Name		
	Ensures the cable	F1.1.	Ensures cable reliability		
F1	availability	F1.2.	Ensures cable maintenance		
	Protocts the cable	F2.1.	Ensures propagation		
F2	against external	·	resistance		
	action	F2.2.	Ensures the minimum radius		
			of curvature		
	Ensures that the	F3.1.	Ensures connection to		
	cable is		temperature		
F2	connected to its	F2 2	Ensures connection with		
F3	external	F3.2.	intermediaries, customers or		
	environment		merchants through the		
		E 4 1	storage and shipping flow		
		F4.1.	Ensures the use of		
			environmentally friendly		
F4	Ensures the	E4.2			
	ecology of the	F4.2.	Ensures the environmentally		
	cable		time of monutes the state		
		E4.2	Ensure and that recentling		
		F4.5.	Ensures product recycling		
	Engrand 4h a	E5 1	Ensures easy handling		
	Ensures the	F3.1.	through an appropriate		
E5	easiness of the		Ensures ensure the last		
ГЈ	cable nandling	E5 2	Linsures ergonomic use by		
		Г <i>J.2.</i> Еб 1	Ensures the use of specific		
		10.1.	copper cable colours		
			Ensures the product's		
F6	Ensures the	EC 2	Ensures the product s		
го	aesthetics of the	F6.2.	aesthetics through its		
	cable		constructive shape and the		
			colours assigned to the		
			materials		
F7	Ensures the	F7.1.	Ensures the existence of jobs,		
	socio-cultural		the need for qualification and		
	effects		poly-qualification		
Fg = F1+F2++F7 The global function of the product					

Table 3. Nomenclature of the low voltage electrical cable functions

In order to create the Value Analysis model, we take into account that the value of a product relates both to the cost of the product and to the required function of a product or service.

On the other hand, we consider that the value is inversely proportional to the cost because a product that generates a high cost has a poor, unattractive value for the client, instead it is directly proportional to the function, because the customer, when buying the product, by default, buys and the function it performs.

The cost is easy to measure, but the function of the product, which is the object or the purpose of the product, is more difficult to quantify; however, the function can be measured by its characteristics, performance and delivery characteristics.

This requires the technical sizing of the functions. Practically, it starts from the principle of proportionality, according to which between the cost of each function and its usefulness is a constant ratio, which requires knowledge of the importance that can be given to functions in relation to which the same importance will be given to the consumption of the necessary resources.

For the stated purpose it is necessary to determine the weight of each function in the global function considering the following pyramid of functions:

Figure 2. Pyramid of functions

Determining the function weights is very important and requires the comparison of the elemental utility values of different nature but whose corresponding variables are measured by different units of measure. The result of the calculations is entered into a square matrix of functions, as shown in Table 4.

*	F1	F2	F3	F4	F5	F6	F7
F1	1	1	1	0	0	0	0
F2	0	1	0	0	0	0	0
F3	0	1	1	0	0	0	0
F4	1	1	1	1	1	0	1
F5	1	1	1	0	1	0	0
F6	1	1	1	1	1	1	1
F7	1	1	1	0	1	0	1
if	5	7	6	2	4	1	3
pf	0,18	0,25	0,21	0,07	0,14	0,04	0,11
Cfg	0,89	1,75	1,29	0,14	0,57	0,04	0,32

Table 4. The Function Matrix

*if – importance level of the function

pf – function weight

 $Cfg-quantification \ of the global function$

To complet the function matrix we considered the following reasoning:

• the diagonal of the matrix is filled in with number 1;

• compare the functions on the rows (lines) with the functions on the columns, two by two, and assign number 1 to the function considered more important and number zero to the symmetric box relative to the main diagonal;

• determine the importance level of the function (if) summing the values of each column, specifying that the value of a function cannot exceed the total number of the functions taken into consideration, according to the relation:

$$if_{j} = \sum_{i=1}^{7} a_{ij}$$
(1)

in which:

 $a-\mbox{the}$ individual value of the 'j'function found at the intersection of the column with the line

- i number of lines
- determine the weight of each function (pf) in the total utility value of the product according to the relation::

$$pf_{j} = \frac{if_{j}}{\sum_{\substack{j=1\\j=1}}^{7} if_{j}}$$
(2)

The technical dimensioning of the functions allows the critique and identification of some functions that are oversized or sub-dimensioned from the technical point of view and the correlation between the technical and the qualitative level of the product as compared to the socio-economic needs and to the similar products made by other rival entities.

Conclusions

Drawing attention to the general concept of the Value Analysis / Value Engineering, we note that the basic notion it operates with is the function as a special quality of the object designed, studied, modernized, etc., in relation to the production environment, on the one hand, and with the user, on the other hand, which must be correctly identified and classified for the purpose of highlighting the elemental or global utility value.

One of the most important stages of the Value Analysis / Value Engineering method is the setting of the nomenclature and the importance level of the functions. In this approach, we considered that the value is inversely proportional to the cost because a product that generates a high cost has a poor, unattractive value for the client, but it is directly proportional to the function because the customers buy not only the product, but also the function it performs, which is why we made the technical dimensioning of functions based on their matrix.

References

- 1. Charlot, X.- (2006). *Analyse Fonctionnelle La Londe les Maures*, 11 au 17 juin 2006, 48. at http://www.in2p3.fr/actions/formation/ConduiteProjet06/doc-Charlot.pdf
- 2. Dragomir, C., (2008). *Managementul afacerilor (Business Mnagement)*, Expert Publishing House, București.
- 3. Fernandez, A., (2014). *Le Chef de projet efficace. 12 bonnes pratiques pour un management humain*, www.eyrolles.com
- 4. Rich, N. & Holweg, M., (2000). *Value Analysis/Value Engineering*, Lean Enterprise Research Centre Cardiff, United Kingdom, 2, at http://www.adi.pt/docs/ innoregio_value_analysis.pdf
- 5. Standards Committee, STAS 11272/1-79